
 AWS IoT Platform technical documentation 

 Problem definition 
 IoT  Platform  is  a  complex  and  sophisticated  system  that  requires  implementation  of 
 multiple  processes,  such  as  data  ingestion,  storing,  processing  and  analytics  from  the 
 edge  devices.  In  addition,  the  modern  smart  platform  also  requires  machine  learning  to 
 implement  anomaly  detection,  forecast,  classification,  computer  vision  tasks  in  edge 
 and  cloud.  Moreover,  companies  must  possess  an  extensive  IT  department  with 
 appropriate  competition  to  utilize  cloud  service  capabilities.  It  leads  to  a  challenging 
 task,  especially  for  critical  systems  where  low  latency,  robustness,  and  security  are 
 mandatory.  Decomposing  the  complex  solution,  we  could  consider  a  few  large 
 architecture building blocks: edge platform, data platform and machine learning. 

 AWS  Cloud  significantly  eliminates  efforts  to  build  the  system  and  integrate  facility  into 
 the  platform.  In  the  following  sections,  we  consider  a  solution  with  AWS  Cloud  that 
 simplifies  building  an  data  platform,  edge  platform  and  machine  learning  at  the  cloud 
 and edge layer. 

 Data Platform Description 

 How Data Platform works 

 The  entry  point  of  Data  Platform  is  the  ingestion  service  AWS  IoT  Core  for  the  edge 
 layer.  The  next  stages  are  storing  and  processing  data  for  providing  analytics  and 
 training ML models capabilities. As given in Figure 1-1. 



 Figure 1-1 

 Inspect these parts in detail: 

 1)  Having  ingested  device  events  from  the  edge  site,  we  applied  aggregation  and 
 transformation  by  AWS  Firehose  to  accumulate  and  store  batches  at  least  for  the 
 last  minute  in  an  appropriate  format,  such  as  parquet  or  ORC.  Nevertheless, 
 according  to  AWS  IoT  best  practices  ,  it  is  better  to  process  data  at  the  edge  layer 
 before sending it to the cloud as much as possible. 

 2)  Data  processing  and  storage  is  a  large  building  block  for  anomaly  detection 
 systems.  In  addition,  this  part  prepares  data  for  training  machine  learning  models 
 and  visual  quality  control.  We  are  considering  building  an  ETL  pipeline  with  AWS 
 Glue and S3 as a storage system to implement this functionality. 

https://docs.aws.amazon.com/wellarchitected/latest/iot-lens-checklist/best-practice-20-4.html


 3)  In  the  case  of  visualization,  we  have  at  least  two  options:  a  business  intelligence 
 tool  called  AWS  QuickSight  and  open-source  visualization  tool  AWS  Grafana  with 
 Athena connector  . 

 4)  Having  prepared  data  for  machine  learning,  we  could  train  models  using  AWS 
 Sagemaker  components.  Additionally,  the  pipeline  is  scalable  for  the  hundreds  of 
 models that each model uses per device type. 

 According  to  model  training,  we  can  consider  such  options  as  AWS  Sagemaker 
 API, AWS Sagemaker pipeline and any customer-specific method. 
 In  addition,  AWS  Sagemaker  provides  a  component  for  model  compilation. 
 Hence,  a  compiled  model  is  optimized  for  a  specific  platform  or  device  type  by 
 NEO-compiler.  Finally,  IoT  Core  packages  the  compiled  model  to  deploy  in  the 
 edge layer. 

 AWS IoT Core Rules 
 AWS  IoT  Core  uses  a  set  of  rules  for  routing.  Each  rule  represents  a  SQL  query  from 
 MQTT topics and a destination system. An example of a rule is shown in Figure 1-2. 

 Figure 1-2 

 As  a  destination,  AWS  IoT  Core  provides  a  lot  of  options.  In  our  case,  AWS  Firehose 
 Stream  for  data  aggregation  and  AWS  Lambda  for  notifications  are  suitable  choices.  In 
 addition, you can explore detailed settings in  AWS  Documentation  . 

https://grafana.com/grafana/plugins/grafana-athena-datasource/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html


 Machine learning flow 

 In  order  to  implement  machine  learning  flow  with  edge  capabilities,  AWS  Sagemaker 
 provides  three  types  of  jobs:  training  jobs,  compilation  jobs  and  edge  packaging  jobs. 
 AWS Sagemaker console is shown in Figure 1-3 below. 

 Figure 1-3 

 Inspect this functionality in detail: 

 1)  In Training jobs, AWS Sagemaker uses the docker images to train models. 
 There  is  a  possibility  to  use  AWS-provided  images  with  the  most  popular 
 frameworks,  such  as  Tensorflow,  Pytorch,  MXNet,  Scikit-learn  etc.  Furthermore, 
 AWS  provides  Amazon  SageMaker  Python  SDK  to  create  various  estimators  and 
 utilize  Sagemaker  API  without  directly  using  the  docker  images.  Besides  that,  we 
 can build a custom docker image hosted in ECR to train models. 

 Additionally,  before  using  training  jobs,  data  scientists  can  bootstrap  models  in 
 AWS Sagemaker Notebook. 

 2)  The  compilation  process  is  responsible  for  getting  an  optimized  model  for  various 
 platforms  or  CPU-based  and  GPU-based  device  types.  Therefore,  AWS 
 Sagemaker uses Neo Compiler to perform model compilation. 

https://sagemaker.readthedocs.io/


 3)  AWS  Greengrass  delivers  the  model  as  a  standalone  component  to  the  edge 
 layer.  To  address  this  task,  AWS  Sagemaker  provides  a  packaging  job.  Having  a 
 packaged  model,  we  could  use  it  along  with  AWS  Sagemaker  Edge  Agent  ,  also 
 known as an inference edge runtime. 

 In  addition,  we  provide  an  automation  solution  on  the  basis  of  Step  Functions.  The  flow 
 includes the stages from training model to deployment. As given in Figure 1-2. 

 Figure 1-2 

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-device-fleet-about.html


 To  modify  the  flow,  you  can  go  to  AWS  Step  Function  console  and  tune  each  job  to  your 
 company's  requirements.  The  steps  configuration  comes  from  AWS  Sagemaker  API 
 request  params.  See  details  in  API  documentation  .  The  job  “Update  versions”  invokes 
 AWS  lambda  function  to  update  the  model  component  version  in  AWS  System 
 Parameter  Store.  To  modify  the  given  logic,  navigate  to  AWS  Lambda  Console  and 
 change the function called test-ml-lambda-for-state-machine. 

 Edge layer Description 
 AWS  IoT  Greengrass  provides  capabilities  to  build  anomaly  detection  at  the  edge  site 
 without  significant  developing  efforts  using  AWS-provided  components.  The  runtime  for 
 these  components  at  the  edge  site  is  called  AWS  Greengrass.  Moreover,  we  can  build 
 custom  Greengrass  components  written  in  Java,  C++  or  Python  to  implement 
 customer-specific logic, such as inference and anomaly response. 
 Overall,  a  combination  of  AWS-provided  Greengrass  components  and  the  custom 
 components  comprehend  the  implementation  of  an  anomaly  detection  system. 
 Additionally, AWS calls it the core device. 

 Speaking  of  security,  the  AWS  IoT  ecosystem  supports  zero  trust  by  default. 
 Consequently,  IoT  Greengrass  components  establish  trust  by  authentication  using 
 X.509  certificates,  security  tokens  and  custom  authorizers.  So  that  all  communications 
 among  client  devices,  Greengrass  core  devices  and  IoT  Core  are  secured  by  TLS  1.2. 
 As given in Figure 1-3. 

 In  the  next  sections,  we  consider  data  ingestion,  inference  and  anomaly  response  logic, 
 and also deployment to the edge site. 

 Data ingestion 
 Data  ingestion  is  a  complicated  task  for  any  manufacturing  company.  To  ingest  data  to 
 the  core  devices,  we  use  MQTT  protocol  over  TLS  1.2  implemented  in  AWS 
 Greengrass  MQTT  broker  component.  Besides  that,  if  the  client  devices  don’t  support 
 MQTT  protocol,  we  are  supposed  to  write  MQTT  adapter  components.  Additionally, 
 integration  with  AWS  services,  such  as  AWS  Cloudwatch,  Kinesis  Video  Streams  are 
 secured by  AWS-provided components  . 

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations_Amazon_SageMaker_Service.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html


 Furthermore,  we  can  extend  ingestion  functionality  to  the  core  devices  by  using 
 community  components  .  It  enables  data  collection  over  protocols  such  as  Modbus, 
 LoRaWaN  , WebRTC and so on. 

 As given in Figure 1-3. 

 Figure 1-3 

 Further on, each stage of data ingestion is covered. 

 1.  As  we  mentioned,  the  connection  between  the  client  devices  and  MQTT  Broker 
 Greengrass  component  requires  using  MQTT  as  a  transport.  It  leads  to  a  certain 
 volume  of  work  in  writing  adapters.  Nevertheless,  this  approach  allows  us  to 
 encapsulate  all  customer-specific  protocols  outside  and  focus  Greengrass 
 components on an anomaly detection task. 

 Additionally,  we  can  manage  video  feeds  from  various  sources,  such  as  AWS 
 panorama  devices  with  embedded  computer  vision  algorithms.  Accordingly,  we 
 can  perform  anomaly  detection  for  smart  cities,  evaluate  manufacturing  quality, 
 improve supply chain logistics, and track retail visitors. 

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-software-catalog.html
https://github.com/awslabs/aws-greengrass-labs-component-for-the-things-stack-lorawan


 2.  AWS  IoT  Ecosystem  provides  the  components  to  host  MQTT  Brokers,  such  as 
 the  Moquette  MQTT  3.1.1  and  the  EMQX  MQTT  5.0  broker  components. 
 According  to  zero-trust  principles,  the  connections  with  those  must  only  be 
 established by TLS 1.2. 

 3.  Finally,  the  selected  MQTT  topics  route  to  IoT  Core  using  the  MQTT  Bridge 
 component. 

 Inference at the edge 
 Inference  logic  is  implemented  in  a  Greengrass  custom  component  with  C++,  Java  or 
 Python. 
 The  component  utilizes  AWS  Sagemaker  Edge  Agent  GRCP  API  to  manage  the  models 
 and  perform  predictions.  Accordingly,  Edge  Agent  can  load  models  from  a  deployed 
 model  auto-generated  component,  described  in  the  section  Machine  learning  flow,  into 
 memory. The overall approach is shown in Figure 1-4. 

 Figure 1-4 

 Inference  app  component  reads  data  from  AWS  IoT  Greengrass  Core  IPC  service  (local 
 pubsub),  manages  the  sample,  and  invokes  Sagemaker  Edge  Agent  API  to  implement 
 the inference. 

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-manage-model.html


 The inference app components has the following responsibilities: 
 -  Listen to local pubsub 
 -  pre-processing data to build an input sample for the inference 
 -  inference interpretation 
 -  edge processing before sending to AWS IoT Core 

 You  can  find  a  detailed  description  of  the  component  development  process  in  AWS 
 documentation  . 

 According  to  the  desired  performance,  we  can  consider  the  various  optimization 
 techniques:  implementing  the  component  in  low-overhead  languages,  such  as  C++; 
 reducing  the  network  communications  by  execution  inference  without  Sagemaker  Edge 
 Agent;  using  a  much  faster  machine  learning  model;  applying  batching  to  an  input 
 sample; upgrading hardware. 
 Regarding  the  inference  platform,  AWS-provided  inference  engine  supports  CPU-based 
 inference and GPU-based inference, such as NVIDIA Jetson. 

 You can inspect a detailed example of an inference app in the Case Study section. 

 Anomaly response at the edge 
 Detecting  anomalies  logically  to  implement  an  anomaly  response  mechanism.  For  this 
 purpose,  we  created  another  AWS  Greengrass  component  for  the  edge  site  called  the 
 anomaly  response  app.  As  given  in  Figure  1-4.  So  that  the  primary  responsibilities  are 
 listed below: 

 -  Listen to local pubsub 
 -  Choose the appropriate anomaly response for a particular anomaly 
 -  Communicate with customer device management systems 
 -  Notify customers about the executed commands through IoT Core 

 The  notifications  from  AWS  IoT  Core  can  direct  to  Lambda,  AWS  SNS,  AWS 
 Cloudwatch or even HTTP Endpoint. 

 You  can  inspect  a  detailed  example  of  an  anomaly  response  app  in  the  Case  Study 
 section. 

 Deployment 

https://docs.aws.amazon.com/greengrass/v2/developerguide/develop-greengrass-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/develop-greengrass-components.html


 Deployment  of  AWS  Greengrass  components  performed  by  AWS  IoT  platform.  To 
 create  deployment  we  can  use  either  AWS  IoT  Core  console,  or  AWs  IoT  Core  API.  The 
 approach with the console is shown in Figure 1-5. 

 Figure 1-5 

 So  that  you  can  select  the  list  of  components  with  appropriate  versions  and 
 configurations. We recommend using the following list: 

 1)  aws.greengrass.SageMakerEdgeManager  -  The  component  delivers  the  AWS 
 Sagemaker Edge Agent to the edge layer. 

 2)  aws.greengrass.clientdevices.mqtt.Bridge  -  The  component  enables  transfers 
 messages from local MQTT broker to IoT Core. 

 3)  aws.greengrass.clientdevices.mqtt.Moquette  -  the  component  enables  local 
 MQTT Broker. 

 4)  aws.greengrass.LogManager  -  optionally  uploads  logs  from  Greengrass  core 
 devices to Amazon CloudWatch Logs. 

 5)  aws.greengrass.Cli  - develop and debug components  locally. 
 6)  aws.greengrass.clientdevices.IPDetector  -  Client  devices  use  this  information  to 

 discover core devices to which they can connect. 

 In  addition,  the  list  can  be  extended  with  inference  app  component,  model  component 
 and anomaly response app component. 

https://us-east-1.console.aws.amazon.com/iot/home?region=us-east-1#/greengrass/v2/components/all/aws.greengrass.Cli/versions/2.7.0


 It's  important  to  note  that  things  or  core  devices  can  have  only  one  active  deployment  at 
 a time. 

 Demo ML applications 

 The  solution  consists  of  a  simulation  of  the  three  client  devices  and  the  bootstrap  script 
 to  create  AWS  Greengrass  components,  such  as  the  inference  and  anomaly  response 
 apps. 

 Create Edge infrastructure for Demo 
 ADP  IoT  platform  provides  the  docker  container  for  demonstration  purposes  that 
 includes  codebase  for  GreengrassV2  components  and  client  devices.  The  main  goal  of 
 this container is to simplify the deployment process and provide reference of use cases. 

 Initial setup 
 At  first,  docker  containers  should  be  started  with  following  commands  in  different 
 terminal tabs as we are planned to use containers in interactive mode: 

 Code: shell 

 # Command to launch container for GreengrassV2 Core device 
 > docker run --name core-device \ 

 -e AWS_DEFAULT_REGION=  YOUR-REGION  \ 
 -e AWS_SECRET_ACCESS_KEY=  YOUR-SECRET-ACCESS-KEY  \ 

 -e  AWS_ACCESS_KEY_ID=  YOUR-ACCESS-KEY-ID  -ti  \ 
 CONTAINER-NAME  :  CONTAINER-VERSION 

 # Command to launch container for Client Thing device 
 > docker run --name client-thing \ 

 -e AWS_DEFAULT_REGION=  YOUR-REGION  \ 
 -e AWS_SECRET_ACCESS_KEY=  YOUR-SECRET-ACCESS-KEY  \ 

 -e  AWS_ACCESS_KEY_ID=  YOUR-ACCESS-KEY-ID  -ti  \ 
 CONTAINER-NAME  :  CONTAINER-VERSION 



 Core device setup 

 To  prepare  your  core  device  to  be  deployed,  open  terminal  tab  where  core-device  was 
 launched and enter following command into container’s terminal: 

 Code: shell 

 > run-core-device 

 The  script  is  a  simple  wrapper  around  GreengrassV2  Installer  which  will  install  AWS 
 Nucleus  component  inside  the  container  and  start  the  Greengrass  component.  All  the 
 resources  related  to  the  demo  will  have  prefixes  ‘adp-iot-demo’  .  As  a  result,  you  will  be 
 able to see thing device, core device and all related policies. 

 Prepare components 
 To  build  and  publish  demon  components  into  Greengrass  registry  and  S3  bucket,  open 
 client-thing  container’s terminal and launch command: 

 Code: shell 

 > create-components 

 This  script  will  initialize  components,  prepare  artifacts.  As  well,  s3  bucket  for 
 components  will  be  created  with  the  prefix  ‘adp-iot-demo’  .  As  a  result,  two  component 
 will be built and published into S3 bucket and Greengrass registry 

 Prepare client thing device 
 Preparation  of  client  thing  devices  could  be  done  by  following  commands  in  the 
 client-thing  terminal: 

 Code: shell 

 > create-client-thing  # The script will bootstrap  resources for IoT thing 
 >  link-core-device-and-thing  #  Create  association  between  core-device  and 



 Code: shell 

 client-thing 
 >  create-core-deployment  #  Bootstrap  some  default  recommendations  for  Core 
 devices 

 Launch client thing device 
 Container  provides  two  options  to  launch  a  client  thing  device  code.  First  option  is  to 
 send  data  into  IoT  Core  directly  via  IoT  endpoint.  Second  option  is  to  send  data  via 
 Greengrass  core  device  with  cloud  discovery.  In  the  demo  we  will  be  sending  data  via 
 Greengrass. Run following command in  client-thing  container: 

 Code: shell 

 > run-client-device-greengrass  # Send data via Greengrass 

 Machine learning flow 

 After  setting  up  the  main  edge  components,  we  need  to  prepare  the  AWS  Model 
 Greengrass  component  with  the  ML  model.  In  order  to  automate  the  preparation 
 pipeline,  we  described  a  state  machine  in  AWS  Step  Function  in  the  previous  section. 
 We  recommend  using  that  flow  to  perform  model  training,  compilation,  edge  packaging 
 and  deploy  a  model  component  at  the  edge  site.  To  execute  the  flow,  navigate  to  AWS 
 Step Function console and find a state machine called IoTMachineLearningFlow. 

 The  primary  machine  learning  job  is  called  “Sagemaker  training  job”  with  the  defined 
 input,  output  and  hyperparameters.  You  can  discover  a  detailed  description  of  API 
 params  in  AWS  documentation  .  The  given  job  uses  AWS-Provided  image  for  PyTorch 
 ML framework and the dataset from the previous section. 

 Inspect the major artifacts for training purposes: 

 1)  sagemaker_submit_directory  -  contains  the  S3  location  of  an  training  code 
 (gzipped) compatible with SageMaker TrainingJob  ; 

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#train-a-model-with-pytorch
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#train-a-model-with-pytorch


 2)  sagemaker_program  -  the  python  module  from  the  archive  that  is  started  by 
 SageMaker  TrainingJob,  must  process  the  command  line  arguments  and  store 
 training results in the specified folder. 

 It’s  important  to  note  that  the  name  of  execution  turns  into  the  name  of  all  created  jobs 
 in AWS Sagemaker in the scope of execution. 

 As  a  result  of  execution,  we  have  created  and  deployed  the  AWS  Greengrass 
 component with the model called SagemakerModelComponent to the core device. 

 Afterward,  we  can  check  the  overall  working  of  the  edge  layer  using  the  MQTT  test 
 client  of  AWS  IoT  Core.  Navigate  to  the  MQTT  test  client  tab  and  subscribe  by  the  topic 
 filter “anomaly/#”. As given in Figure 1-6. 

 Figure 1-6 

 Having  received  data  from  the  client  devices,  we  could  direct  the  messages  to  S3  by 
 AWS  Firehose  Stream.  Navigating  to  the  tab  Message  Routing/Rules  of  AWS  IoT  Core, 
 you  can  see  pre-created  rules.  Ensure  that  the  rule  configuration  matches  the  MQTT 
 topic.  As  a  destination,  there  is  Firehose  Stream  under  the  tab  Actions.  To  discover  the 
 configuration  of  the  delivery  stream,  navigate  to  AWS  Kinesis  console  and  tab  called 
 Delivery  streams.  The  output  configuration  can  be  found  in  the  tab 
 Configuration/Destination settings/Amazon S3 destination. 
 By  following  the  S3  link  of  the  configuration,  you  can  explore  the  buckets  created  by 
 Firehose. 
 Hence, the ingested data can be used as a dataset to train ML models. 


